Advertisement
Review Article| Volume 25, ISSUE 2, P227-238, April 2016

Download started.

Ok

Molecular and Genetic Basis of Pancreatic Carcinogenesis

Which Concepts May be Clinically Relevant?
  • Vincent Bernard
    Affiliations
    Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX 77030, USA

    The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
    Search for articles by this author
  • Jason Fleming
    Affiliations
    Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX 77030, USA

    Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
    Search for articles by this author
  • Anirban Maitra
    Correspondence
    Corresponding author. Department of Pathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Room Z3.3038, Houston, TX 77030.
    Affiliations
    Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX 77030, USA

    Department of Pathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Boulevard, Room Z3.3038, Houston, TX 77030, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rahib L.
        • Smith B.D.
        • Aizenberg R.
        • et al.
        Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.
        Cancer Res. 2014; 74: 2913-2921
        • Siegel R.
        • Ma J.
        • Zou Z.
        • et al.
        Cancer statistics, 2014.
        CA Cancer J Clin. 2014; 64: 9-29
        • Yachida S.
        • Jones S.
        • Bozic I.
        • et al.
        Distant metastasis occurs late during the genetic evolution of pancreatic cancer.
        Nature. 2010; 467: 1114-1117
        • Hruban R.H.
        • Adsay N.V.
        • Albores-Saavedra J.
        • et al.
        Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions.
        Am J Surg Pathol. 2001; 25: 579-586
        • Wu J.
        • Jiao Y.
        • Dal Molin M.
        • et al.
        Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways.
        Proc Natl Acad Sci U S A. 2011; 108: 21188-21193
        • Iacobuzio-Donahue C.A.
        • Klimstra D.S.
        • Adsay N.V.
        • et al.
        Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas.
        Am J Pathol. 2000; 157: 755-761
        • Iacobuzio-Donahue C.A.
        • Wilentz R.E.
        • Argani P.
        • et al.
        Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression.
        Am J Surg Pathol. 2000; 24: 1544-1548
        • Wu J.
        • Matthaei H.
        • Maitra A.
        • et al.
        Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development.
        Sci Transl Med. 2011; 3: 92ra66
        • Jancik S.
        • Drábek J.
        • Radzioch D.
        • et al.
        Clinical relevance of KRAS in human cancers.
        J Biomed Biotechnol. 2010; 2010: 150960
        • Jones S.
        • Zhang X.
        • Parsons D.W.
        • et al.
        Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.
        Science. 2008; 321: 1801-1806
        • Witkiewicz A.K.
        • McMillan E.A.
        • Balaji U.
        • et al.
        Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets.
        Nat Commun. 2015; 6: 6744
        • Campbell P.J.
        • Yachida S.
        • Mudie L.J.
        • et al.
        The patterns and dynamics of genomic instability in metastatic pancreatic cancer.
        Nature. 2010; 467: 1109-1113
        • Caldas C.
        • Hahn S.A.
        • da Costa L.T.
        • et al.
        Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma.
        Nat Genet. 1994; 8: 27-32
        • Schutte M.
        • Hruban R.H.
        • Geradts J.
        • et al.
        Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas.
        Cancer Res. 1997; 57: 3126-3130
        • Sharpless N.E.
        INK4a/ARF: a multifunctional tumor suppressor locus.
        Mutat Res. 2005; 576: 22-38
        • Scarpa A.
        • Capelli P.
        • Mukai K.
        • et al.
        Pancreatic adenocarcinomas frequently show p53 gene mutations.
        Am J Pathol. 1993; 142: 1534-1543
        • Maitra A.
        • Adsay N.V.
        • Argani P.
        • et al.
        Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray.
        Mod Pathol. 2003; 16: 902-912
        • Siegel P.M.
        • Massague J.
        Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer.
        Nat Rev Cancer. 2003; 3: 807-821
        • Yachida S.
        • White C.M.
        • Naito Y.
        • et al.
        Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors.
        Clin Cancer Res. 2012; 18: 6339-6347
        • Biankin A.V.
        • Morey A.L.
        • Lee C.S.
        • et al.
        DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma.
        J Clin Oncol. 2002; 20: 4531-4542
        • Bardeesy N.
        • Cheng K.H.
        • Berger J.H.
        • et al.
        Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer.
        Genes Dev. 2006; 20: 3130-3146
        • Iacobuzio-Donahue C.A.
        • Fu B.
        • Yachida S.
        • et al.
        DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer.
        J Clin Oncol. 2009; 27: 1806-1813
        • Shi C.
        • Hruban R.H.
        • Klein A.P.
        Familial pancreatic cancer.
        Arch Pathol Lab Med. 2009; 133: 365-374
        • Permuth-Wey J.
        • Egan K.M.
        Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis.
        Fam Cancer. 2009; 8: 109-117
        • Su G.H.
        • Hruban R.H.
        • Bansal R.K.
        • et al.
        Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers.
        Am J Pathol. 1999; 154: 1835-1840
        • Witt H.
        • Luck W.
        • Hennies H.C.
        • et al.
        Mutations in the gene encoding the serine protease inhibitor, kazal type 1 are associated with chronic pancreatitis.
        Nat Genet. 2000; 25: 213-216
        • Lowenfels A.B.
        • Maisonneuve P.
        • DiMagno E.P.
        • et al.
        Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group.
        J Natl Cancer Inst. 1997; 89: 442-446
        • Lowenfels A.B.
        • Maisonneuve P.
        • Whitcomb D.C.
        • et al.
        Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis.
        JAMA. 2001; 286: 169-170
        • Rutter J.L.
        • Bromley C.M.
        • Goldstein A.M.
        • et al.
        Heterogeneity of risk for melanoma and pancreatic and digestive malignancies: a melanoma case-control study.
        Cancer. 2004; 101: 2809-2816
        • van der Heijden M.S.
        • Yeo C.J.
        • Hruban R.H.
        • et al.
        Fanconi anemia gene mutations in young-onset pancreatic cancer.
        Cancer Res. 2003; 63: 2585-2588
        • Goggins M.
        • Schutte M.
        • Lu J.
        • et al.
        Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas.
        Cancer Res. 1996; 56: 5360-5364
        • Lynch H.T.
        • Deters C.A.
        • Snyder C.L.
        • et al.
        BRCA1 and pancreatic cancer: pedigree findings and their causal relationships.
        Cancer Genet Cytogenet. 2005; 158: 119-125
        • Hruban R.H.
        • Canto M.I.
        • Goggins M.
        • et al.
        Update on familial pancreatic cancer.
        Adv Surg. 2010; 44: 293-311
        • Kastrinos F.
        • Mukherjee B.
        • Tayob N.
        • et al.
        Risk of pancreatic cancer in families with Lynch syndrome.
        JAMA. 2009; 302: 1790-1795
        • Roberts N.J.
        • Jiao Y.
        • Yu J.
        • et al.
        ATM mutations in patients with hereditary pancreatic cancer.
        Cancer Discov. 2012; 2: 41-46
        • Sausen M.
        • Phallen J.
        • Adleff V.
        • et al.
        Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients.
        Nat Commun. 2015; 6: 7686
        • Biankin A.V.
        • Waddell N.
        • Kassahn K.S.
        • et al.
        Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.
        Nature. 2012; 491: 399-405
        • Mehlen P.
        • Delloye-Bourgeois C.
        • Chedotal A.
        Novel roles for Slits and netrins: axon guidance cues as anticancer targets?.
        Nat Rev Cancer. 2011; 11: 188-197
        • Kikuchi K.
        • Kishino A.
        • Konishi O.
        • et al.
        In vitro and in vivo characterization of a novel semaphorin 3A inhibitor, SM-216289 or xanthofulvin.
        J Biol Chem. 2003; 278: 42985-42991
        • Waddell N.
        • Pajic M.
        • Patch A.M.
        • et al.
        Whole genomes redefine the mutational landscape of pancreatic cancer.
        Nature. 2015; 518: 495-501
        • Jiang X.
        • Hao H.X.
        • Growney J.D.
        • et al.
        Inactivating mutations of RNF43 confer wnt dependency in pancreatic ductal adenocarcinoma.
        Proc Natl Acad Sci U S A. 2013; 110: 12649-12654
        • Bettegowda C.
        • Sausen M.
        • Leary R.J.
        • et al.
        Detection of circulating tumor DNA in early- and late-stage human malignancies.
        Sci Transl Med. 2014; 6: 224ra24
        • Newman A.M.
        • Bratman S.V.
        • To J.
        • et al.
        An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage.
        Nat Med. 2014; 20: 548-554
        • Ting D.T.
        • Wittner B.S.
        • Ligorio M.
        • et al.
        Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells.
        Cell Rep. 2014; 8: 1905-1918
        • Murtaza M.
        • Dawson S.J.
        • Tsui D.W.
        • et al.
        Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA.
        Nature. 2013; 497: 108-112
        • Yu K.H.
        • Ricigliano M.
        • Hidalgo M.
        • et al.
        Pharmacogenomic modeling of circulating tumor and invasive cells for prediction of chemotherapy response and resistance in pancreatic cancer.
        Clin Cancer Res. 2014; 20: 5281-5289
        • Misale S.
        • Yaeger R.
        • Hobor S.
        • et al.
        Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer.
        Nature. 2012; 486: 532-536
        • Barrett M.T.
        • Lenkiewicz E.
        • Evers L.
        • et al.
        Clonal evolution and therapeutic resistance in solid tumors.
        Front Pharmacol. 2013; 4: 2
        • Haeno H.
        • Gonen M.
        • Davis M.B.
        • et al.
        Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies.
        Cell. 2012; 148: 362-375
        • Xia B.
        • Sheng Q.
        • Nakanishi K.
        • et al.
        Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2.
        Mol Cell. 2006; 22: 719-729
        • Villarroel M.C.
        • Rajeshkumar N.V.
        • Garrido-Laguna I.
        • et al.
        Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer.
        Mol Cancer Ther. 2011; 10: 3-8
        • van der Heijden M.S.
        • Brody J.R.
        • Dezentje D.A.
        • et al.
        In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor.
        Clin Cancer Res. 2005; 11: 7508-7515
        • Farmer H.
        • McCabe N.
        • Lord C.J.
        • et al.
        Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
        Nature. 2005; 434: 917-921
        • McCabe N.
        • Lord C.J.
        • Tutt A.N.
        • et al.
        BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of Poly (ADP-Ribose) polymerase: an issue of potency.
        Cancer Biol Ther. 2005; 4: 934-936
        • McLornan D.P.
        • List A.
        • Mufti G.J.
        Applying synthetic lethality for the selective targeting of cancer.
        N Engl J Med. 2014; 371: 1725-1735
        • Marcotte R.
        • Brown K.R.
        • Suarez F.
        • et al.
        Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
        Cancer Discov. 2012; 2: 172-189
        • Ward A.F.
        • Braun B.S.
        • Shannon K.M.
        Targeting oncogenic ras signaling in hematologic malignancies.
        Blood. 2012; 120: 3397-3406
        • Collisson E.A.
        • Trejo C.L.
        • Silva J.M.
        • et al.
        A central role for RAF–>MEK–>ERK signaling in the genesis of pancreatic ductal adenocarcinoma.
        Cancer Discov. 2012; 2: 685-693
        • Shimizu T.
        • Tolcher A.W.
        • Papadopoulos K.P.
        • et al.
        The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer.
        Clin Cancer Res. 2012; 18: 2316-2325