Advertisement

Immunotherapy in Sarcoma

Where Do Things Stand?

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Robert C.
        A decade of immune-checkpoint inhibitors in cancer therapy.
        Nat Commun. 2020; 11: 3801
        • Maki R.G.
        • Jungbluth A.A.
        • Gnjatic S.
        • et al.
        A Pilot Study of Anti-CTLA4 Antibody Ipilimumab in Patients with Synovial Sarcoma.
        Sarcoma. 2013; 2013: 168145
        • Tawbi H.A.
        • Burgess M.
        • Bolejack V.
        • et al.
        Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial.
        Lancet Oncol. 2017; 18: 1493-1501
        • D'Angelo S.P.
        • Mahoney M.R.
        • Van Tine B.A.
        • et al.
        Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials.
        Lancet Oncol. 2018; 19: 416-426
        • Burgess M.A.
        • Bolejack V.
        • Schuetze S.
        • et al.
        Clinical activity of pembrolizumab (P) in undifferentiated pleomorphic sarcoma (UPS) and dedifferentiated/pleomorphic liposarcoma (LPS): Final results of SARC028 expansion cohorts.
        Jco. 2019; 37: 11015
        • Chen J.L.
        • Mahoney M.R.
        • George S.
        • et al.
        A multicenter phase II study of nivolumab +/- ipilimumab for patients with metastatic sarcoma (Alliance A091401): Results of expansion cohorts.
        Jco. 2020; 38: 11511
        • Florou V.
        • Rosenberg A.E.
        • Wieder E.
        • et al.
        Angiosarcoma patients treated with immune checkpoint inhibitors: a case series of seven patients from a single institution.
        J Immunother Cancer. 2019; 7: 213
        • Momen S.
        • Fassihi H.
        • Davies H.R.
        • et al.
        Dramatic response of metastatic cutaneous angiosarcoma to an immune checkpoint inhibitor in a patient with xeroderma pigmentosum: whole-genome sequencing aids treatment decision in end-stage disease.
        Cold Spring Harb Mol Case Stud. 2019; 5: a004408
        • Sindhu S.
        • Gimber L.H.
        • Cranmer L.
        • et al.
        Angiosarcoma treated successfully with anti-PD-1 therapy - a case report.
        J Immunother Cancer. 2017; 5: 58
        • Painter C.A.
        • Jain E.
        • Tomson B.N.
        • et al.
        The Angiosarcoma Project: enabling genomic and clinical discoveries in a rare cancer through patient-partnered research.
        Nat Med. 2020; 26: 181-187
        • Wagner M.J.
        • Othus M.
        • Patel S.P.
        • et al.
        Multicenter phase II trial (SWOG S1609, cohort 51) of ipilimumab and nivolumab in metastatic or unresectable angiosarcoma: a substudy of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART).
        J Immunother Cancer. 2021; 9: e002990
        • Toulmonde M.
        • Penel N.
        • Adam J.
        • et al.
        Use of PD-1 Targeting, Macrophage Infiltration, and IDO Pathway Activation in Sarcomas: A Phase 2 Clinical Trial.
        JAMA Oncol. 2018; 4: 93-97
        • Le Cesne A.
        • Marec-Berard P.
        • Blay J.Y.
        • et al.
        Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: results from the PEMBROSARC study.
        Eur J Cancer. 2019; 119: 151-157
        • Wilky B.A.
        • Trucco M.M.
        • Subhawong T.K.
        • et al.
        Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft part sarcoma: a single-arm, phase 2 trial.
        Lancet Oncol. 2019; 20: 837-848
        • Martin-Broto J.
        • Hindi N.
        • Grignani G.
        • et al.
        Nivolumab and sunitinib combination in advanced soft tissue sarcomas: a multicenter, single-arm, phase Ib/II trial.
        J Immunother Cancer. 2020; 8: e001561
        • Xie L.
        • Xu J.
        • Sun X.
        • et al.
        Apatinib plus camrelizumab (anti-PD1 therapy, SHR-1210) for advanced osteosarcoma (APFAO) progressing after chemotherapy: a single-arm, open-label, phase 2 trial.
        J Immunother Cancer. 2020; 8
        • Petitprez F.
        • de Reyniès A.
        • Keung E.Z.
        • et al.
        B cells are associated with survival and immunotherapy response in sarcoma.
        Nature. 2020; 577: 556-560
        • Cytlak U.M.
        • Dyer D.P.
        • Honeychurch J.
        • et al.
        Immunomodulation by radiotherapy in tumour control and normal tissue toxicity.
        Nat Rev Immunol. 2022; 22: 124-138
        • Wang Y.J.
        • Fletcher R.
        • Yu J.
        • et al.
        Immunogenic effects of chemotherapy-induced tumor cell death.
        Genes Dis. 2018; 5: 194-203
        • Livingston M.B.
        • Jagosky M.H.
        • Robinson M.M.
        • et al.
        Phase II study of pembrolizumab in combination with doxorubicin in metastatic and unresectable soft tissue sarcoma.
        Clin Cancer Res. 2021; 27: 6424-6431
        • Pollack S.M.
        • Redman M.W.
        • Baker K.K.
        • et al.
        Assessment of Doxorubicin and Pembrolizumab in Patients With Advanced Anthracycline-Naive Sarcoma: A Phase 1/2 Nonrandomized Clinical Trial.
        JAMA Oncol. 2020; 6: 1778-1782
        • Zhang S.
        • Kohli K.
        • Black R.G.
        • et al.
        Systemic Interferon-γ Increases MHC Class I Expression and T-cell Infiltration in Cold Tumors: Results of a Phase 0 Clinical Trial.
        Cancer Immunol Res. 2019; 7: 1237-1243
        • Davis A.A.
        • Patel V.G.
        The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors.
        J Immunother Cancer. 2019; 7: 278
        • Zheng C.
        • You W.
        • Wan P.
        • et al.
        Clinicopathological and prognostic significance of PD-L1 expression in sarcoma: A systematic review and meta-analysis.
        Medicine (Baltimore). 2018; 97: e11004
        • Italiano A.
        • Bellera C.
        • D'Angelo S.
        PD1/PD-L1 targeting in advanced soft-tissue sarcomas: a pooled analysis of phase II trials.
        J Hematol Oncol. 2020; 13: 55
        • Zhu M.M.T.
        • Shenasa E.
        • Nielsen T.O.
        Sarcomas: Immune biomarker expression and checkpoint inhibitor trials.
        Cancer Treat Rev. 2020; 91: 102115
        • Keung E.Z.
        • Burgess M.
        • Salazar R.
        • et al.
        Correlative Analyses of the SARC028 Trial Reveal an Association Between Sarcoma-Associated Immune Infiltrate and Response to Pembrolizumab.
        Clin Cancer Res. 2020; 26: 1258-1266
        • Italiano A.
        • Bessede A.
        • Bompas E.
        • et al.
        PD1 inhibition in soft-tissue sarcomas with tertiary lymphoid structures: A multicenter phase II trial.
        Jco. 2021; 39: 11507
      1. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas.
        Cell. 2017; 171 (e28): 950.e28
        • Campbell B.B.
        • Light N.
        • Fabrizio D.
        • et al.
        Comprehensive Analysis of Hypermutation in Human Cancer.
        Cell. 2017; 171 (e10): 1042.e10
        • Doyle L.A.
        • Nowak J.A.
        • Nathenson M.J.
        • et al.
        Characteristics of mismatch repair deficiency in sarcomas.
        Mod Pathol. 2019; 32: 977-987
        • Campanella N.C.
        • Penna V.
        • Ribeiro G.
        • et al.
        Absence of Microsatellite Instability In Soft Tissue Sarcomas.
        Pathobiology. 2015; 82: 36-42
        • Dufresne A.
        • Lesluyes T.
        • Ménétrier-Caux C.
        • et al.
        Specific immune landscapes and immune checkpoint expressions in histotypes and molecular subtypes of sarcoma.
        Oncoimmunology. 2020; 9: 1792036
        • Hu C.
        • Chen B.
        • Huang Z.
        • et al.
        Comprehensive profiling of immune-related genes in soft tissue sarcoma patients.
        J Transl Med. 2020; 18: 337
        • Jungbluth A.A.
        • Antonescu C.R.
        • Busam K.J.
        • et al.
        Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7.
        Int J Cancer. 2001; 94: 252-256
        • Hemminger J.A.
        • Ewart Toland A.
        • Scharschmidt T.J.
        • et al.
        The cancer-testis antigen NY-ESO-1 is highly expressed in myxoid and round cell subset of liposarcomas.
        Mod Pathol. 2013; 26: 282-288
        • Garrido F.
        • Aptsiauri N.
        • Doorduijn E.M.
        • et al.
        The urgent need to recover MHC class I in cancers for effective immunotherapy.
        Curr Opin Immunol. 2016; 39: 44-51
        • D'Angelo S.P.
        • Melchiori L.
        • Merchant M.S.
        • et al.
        Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1 (c259)T Cells in Synovial Sarcoma.
        Cancer Discov. 2018; 8: 944-957
      2. Hong, D.S. Phase I dose escalation and expansion trial to assess the safety and efficacy of ADP-A2M4 SPEAR T cells in advanced solid tumors. 2020. ASCO Virtual Scientific Program: American Society of Clinical Oncology. J Clin Oncol, 38, no. 15_suppl. 2020. 102-102.

        • Rosenbaum E.
        • Seier K.
        • Bandlamudi C.
        • et al.
        HLA Genotyping in Synovial Sarcoma: Identifying HLA-A∗02 and Its Association with Clinical Outcome.
        Clin Cancer Res. 2020; 26: 5448-5455
        • Ramachandran I.
        • Lowther D.E.
        • Dryer-Minnerly R.
        • et al.
        Systemic and local immunity following adoptive transfer of NY-ESO-1 SPEAR T cells in synovial sarcoma.
        J Immunother Cancer. 2019; 7: 276
        • D'Angelo S.P.
        • Noujaim J.C.
        • Thistlethwaite F.
        • et al.
        IGNYTE-ESO: A master protocol to assess safety and activity of letetresgene autoleucel (lete-cel; GSK3377794) in HLA-A∗02+ patients with synovial sarcoma or myxoid/round cell liposarcoma (Substudies 1 and 2).
        Jco. 2021; 39: TPS11582
        • Ishihara M.
        • Kageyama S.
        • Miyahara Y.
        • et al.
        MAGE-A4, NY-ESO-1 and SAGE mRNA expression rates and co-expression relationships in solid tumours.
        BMC Cancer. 2020; 20: 606
        • Kakimoto T.
        • Matsumine A.
        • Kageyama S.
        • et al.
        Immunohistochemical expression and clinicopathological assessment of the cancer testis antigens NY-ESO-1 and MAGE-A4 in high-grade soft-tissue sarcoma.
        Oncol Lett. 2019; 17: 3937-3943
        • D'Angelo S.P.
        • Van Tine B.A.
        • Attia S.
        • et al.
        SPEARHEAD-1: A phase 2 trial of afamitresgene autoleucel (Formerly ADP-A2M4) in patients with advanced synovial sarcoma or myxoid/round cell liposarcoma.
        Jco. 2021; 39: 11504
        • June C.H.
        • O'Connor R.S.
        • Kawalekar O.U.
        • et al.
        CAR T cell immunotherapy for human cancer.
        Science. 2018; 359: 1361-1365
        • Brudno J.N.
        • Kochenderfer J.N.
        Toxicities of chimeric antigen receptor T cells: recognition and management.
        Blood. 2016; 127: 3321-3330
        • Roskoski Jr., R.
        The ErbB/HER family of protein-tyrosine kinases and cancer.
        Pharmacol Res. 2014; 79: 34-74
        • Ahmed N.
        • Brawley V.S.
        • Hegde M.
        • et al.
        Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma.
        J Clin Oncol. 2015; 33: 1688-1696
        • Navai S.A.
        • Derenzo C.
        • Joseph S.
        • et al.
        Abstract LB-147: Administration of HER2-CAR T cells after lymphodepletion safely improves T cell expansion and induces clinical responses in patients with advanced sarcomas.
        Cancer Res. 2019; 79 (LB-147-LB-147)
        • Duan Z.
        • Choy E.
        • Harmon D.
        • et al.
        Insulin-like growth factor-I receptor tyrosine kinase inhibitor cyclolignan picropodophyllin inhibits proliferation and induces apoptosis in multidrug resistant osteosarcoma cell lines.
        Mol Cancer Ther. 2009; 8: 2122-2130
        • Tzanakakis G.N.
        • Giatagana E.M.
        • Berdiaki A.
        • et al.
        The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis.
        Cancers (Basel). 2021; 13
        • Huang X.
        • Park H.
        • Greene J.
        • et al.
        IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas.
        PLoS One. 2015; 10: e0133152
        • Wang Z.
        • Zhao K.
        • Hackert T.
        • et al.
        CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression.
        Front Cell Dev Biol. 2018; 6: 97
        • Zhang Y.
        • Ding C.
        • Wang J.
        • et al.
        Prognostic significance of CD44V6 expression in osteosarcoma: a meta-analysis.
        J Orthop Surg Res. 2015; 10: 187
        • Leuci V.
        • Casucci G.M.
        • Grignani G.
        • et al.
        CD44v6 as innovative sarcoma target for CAR-redirected CIK cells.
        Oncoimmunology. 2018; 7: e1423167
        • Fernandez L.
        • Valentin J.
        • Zalacain M.
        • et al.
        Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner.
        Cancer Lett. 2015; 368: 54-63
        • Lehner M.
        • Götz G.
        • Proff J.
        • et al.
        Redirecting T cells to Ewing's sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection.
        PLoS One. 2012; 7: e31210
        • Fernandez L.
        • Metais J.-Y.
        • Escudero A.
        • et al.
        Memory T Cells Expressing an NKG2D-CAR Efficiently Target Osteosarcoma Cells.
        Clin Cancer Res. 2017; 23: 5824-5835
        • Rosenberg S.A.
        • Yang J.C.
        • Sherry R.M.
        • et al.
        Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy.
        Clin Cancer Res. 2011; 17: 4550-4557
        • Andersen R.
        • Donia M.
        • Ellebaek E.
        • et al.
        Long-Lasting Complete Responses in Patients with Metastatic Melanoma after Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes and an Attenuated IL2 Regimen.
        Clin Cancer Res. 2016; 22: 3734-3745
        • Besser M.J.
        • Shapira-Frommer R.
        • Itzhaki O.
        • et al.
        Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies.
        Clin Cancer Res. 2013; 19: 4792-4800
        • Ben-Avi R.
        • Farhi R.
        • Ben-Nun A.
        • et al.
        Establishment of adoptive cell therapy with tumor infiltrating lymphocytes for non-small cell lung cancer patients.
        Cancer Immunol Immunother. 2018; 67: 1221-1230
        • Lee H.J.
        • Kim Y.A.
        • Sim C.K.
        • et al.
        Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer.
        Oncotarget. 2017; 8: 113345-113359
        • Retèl V.P.
        • Steuten L.M.
        • Mewes J.C.
        • et al.
        Early Cost-Effectiveness Modeling for Tumor Infiltrating Lymphocytes (TIL) -Treatment Versus Ipilimumab in Metastatic Melanoma Patients.
        Value Health. 2014; 17: A640
        • Rosenberg S.A.
        • Yannelli J.R.
        • Yang J.C.
        • et al.
        Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2.
        J Natl Cancer Inst. 1994; 86: 1159-1166
        • Marabondo S.
        • Kaufman H.L.
        High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions.
        Expert Opin Drug Saf. 2017; 16: 1347-1357
        • Yang J.C.
        Toxicities Associated With Adoptive T-Cell Transfer for Cancer.
        Cancer J. 2015; 21: 506-509
        • Mullinax J.E.
        • Hall M.
        • Beatty M.
        • et al.
        Expanded Tumor-infiltrating Lymphocytes From Soft Tissue Sarcoma Have Tumor-specific Function.
        J Immunother. 2021; 44: 63-70
        • Guillerey C.
        • Huntington N.D.
        • Smyth M.J.
        Targeting natural killer cells in cancer immunotherapy.
        Nat Immunol. 2016; 17: 1025-1036
        • Domagala J.
        • Lachota M.
        • Klopotowska M.
        • et al.
        The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity.
        Cancers (Basel). 2020; 12
        • Ljunggren H.G.
        • Malmberg K.J.
        Prospects for the use of NK cells in immunotherapy of human cancer.
        Nat Rev Immunol. 2007; 7: 329-339
        • Tonn T.
        • Schwabe D.
        • Klingemann H.G.
        • et al.
        Treatment of patients with advanced cancer with the natural killer cell line NK-92.
        Cytotherapy. 2013; 15: 1563-1570
        • Seliktar-Ofir S.
        • Merhavi-Shoham E.
        • Itzhaki O.
        • et al.
        Selection of Shared and Neoantigen-Reactive T Cells for Adoptive Cell Therapy Based on CD137 Separation.
        Front Immunol. 2017; 8: 1211
        • Inozume T.
        • Hanada K.
        • Wang Q.J.
        • et al.
        Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells.
        J Immunother. 2010; 33: 956-964
        • Riggan L.
        • Shah S.
        • O'Sullivan T.E.
        Arrested development: suppression of NK cell function in the tumor microenvironment.
        Clin Transl Immunol. 2021; 10: e1238
        • Crowe N.Y.
        • Smyth M.J.
        • Godfrey D.I.
        A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas.
        J Exp Med. 2002; 196: 119-127
        • Knochelmann H.M.
        • Smith A.S.
        • Dwyer C.J.
        • et al.
        CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies.
        Front Immunol. 2018; 9: 1740
        • Kelly C.M.
        • Antonescu C.R.
        • Bowler T.
        • et al.
        Objective Response Rate Among Patients With Locally Advanced or Metastatic Sarcoma Treated With Talimogene Laherparepvec in Combination With Pembrolizumab: A Phase 2 Clinical Trial.
        JAMA Oncol. 2020; 6: 402-408
        • Pollack S.M.
        The potential of the CMB305 vaccine regimen to target NY-ESO-1 and improve outcomes for synovial sarcoma and myxoid/round cell liposarcoma patients.
        Expert Rev Vaccin. 2018; 17: 107-114
        • Somaiah N.
        • Chawla S.P.
        • Block M.S.
        • et al.
        A Phase 1b Study Evaluating the Safety, Tolerability, and Immunogenicity of CMB305, a Lentiviral-Based Prime-Boost Vaccine Regimen, in Patients with Locally Advanced, Relapsed, or Metastatic Cancer Expressing NY-ESO-1.
        Oncoimmunology. 2020; 9: 1847846
        • Chawla S.P.
        • Van Tine B.A.
        • Pollack S.M.
        • et al.
        Phase II Randomized Study of CMB305 and Atezolizumab Compared With Atezolizumab Alone in Soft-Tissue Sarcomas Expressing NY-ESO-1.
        J Clin Oncol. 2021; : Jco2003452https://doi.org/10.1200/JCO.20.03452
        • Dancsok A.R.
        • Gao D.
        • Lee A.F.
        • et al.
        Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas.
        Oncoimmunology. 2020; 9: 1747340
        • Chen L.
        • Oke T.
        • Siegel N.
        • et al.
        The Immunosuppressive Niche of Soft-Tissue Sarcomas is Sustained by Tumor-Associated Macrophages and Characterized by Intratumoral Tertiary Lymphoid Structures.
        Clin Cancer Res. 2020; 26: 4018-4030
      3. Chawla, S.P., et al. RESULTS FROM THE CHONDROSARCOMA PHASE 1 STUDY EXPANSION COHORT OF THE TETRAVALENT DEATH RECEPTOR 5 AGONIST INBRX-109. in Connective Tissue Oncology Society Annual Meeting. November 19, 2020.

        • Coley W.B.
        The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893.
        Clin Orthop Relat Res. 1893; 1991: 3-11
      4. Kawai, A., et al., Efficacy and safety of nivolumab monotherapy in patietns with unresectable clear cell sarcoma and alveolar soft part sarcoma (OSCAR trial, NCCH1510): A multicenter, Phase 2 clinical trial., in Connective Tissue Oncology Society Annual Meeting. November 19, 2020.

        • Hindi N.
        • Rosenbaum E.
        • Jonczak E.
        • et al.
        Retrospective world-wide registry on the efficacy of immune checkpoint inhibitors in alveolar soft part sarcoma: Updated results from sixty patients.
        Jco. 2021; 39: 11564
        • Somaiah N.
        • Conley A.P.
        • Lin H.Y.
        • et al.
        A phase II multi-arm study of durvalumab and tremelimumab for advanced or metastatic sarcomas.
        Jco. 2020; 38: 11509
        • Naqash A.R.
        • O'Sullivan Coyne G.H.
        • Moore N.
        • et al.
        Phase II study of atezolizumab in advanced alveolar soft part sarcoma (ASPS).
        Jco. 2021; 39: 11519
        • Shi Y.
        • Cai Q.
        • Jiang Y.
        • et al.
        Activity and Safety of Geptanolimab (GB226) for Patients with Unresectable, Recurrent, or Metastatic Alveolar Soft Part Sarcoma: A Phase II, Single-arm Study.
        Clin Cancer Res. 2020; 26: 6445-6452
        • Yang J.
        • Dong L.
        • Yang S.
        • et al.
        Safety and clinical efficacy of toripalimab, a PD-1 mAb, in patients with advanced or recurrent malignancies in a phase I study.
        Eur J Cancer. 2020; 130: 182-192
        • D'Angelo S.P.
        • Shoushtari A.N.
        • Keohan M.L.
        • et al.
        Combined KIT and CTLA-4 Blockade in Patients with Refractory GIST and Other Advanced Sarcomas: A Phase Ib Study of Dasatinib plus Ipilimumab.
        Clin Cancer Res. 2017; 23: 2972-2980
        • Gordon E.M.
        • Chua-Alcala V.S.
        • Kim K.
        • et al.
        SAINT: Results of a phase 1/2 study of safety/efficacy using safe amounts of ipilimumab, nivolumab, and trabectedin as first-line treatment of advanced soft tissue sarcoma.
        Jco. 2019; 37: 11016
        • Palmerini E.
        • Lopez-Pousa A.
        • Grignani G.
        • et al.
        IMMUNOSARC: a collaborative Spanish (GEIS) and Italian (ISG) sarcoma groups phase I/II trial of sunitinib and nivolumab in advanced soft tissue and bone sarcoma: Results from the phase II part, bone sarcoma cohort.
        Jco. 2020; 38: 11522