Advertisement

The Cancer Genome Atlas

Impact and Future Directions in Sarcoma
  • Author Footnotes
    1 Joint first authors.
    Jessica Burns
    Footnotes
    1 Joint first authors.
    Affiliations
    Division of Molecular Pathology, Institute of Cancer Research, 15 Cotswold Rd, London SM2 5NG, United Kingdom
    Search for articles by this author
  • Author Footnotes
    1 Joint first authors.
    Jeffrey M. Brown
    Footnotes
    1 Joint first authors.
    Affiliations
    Department of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope Drive, Salt Lake City, UT, 84108, USA
    Search for articles by this author
  • Author Footnotes
    2 Joint corresponding authors.
    Kevin B. Jones
    Correspondence
    Corresponding author.
    Footnotes
    2 Joint corresponding authors.
    Affiliations
    Department of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope Drive, Salt Lake City, UT, 84108, USA
    Search for articles by this author
  • Author Footnotes
    2 Joint corresponding authors.
    Paul H. Huang
    Footnotes
    2 Joint corresponding authors.
    Affiliations
    Division of Molecular Pathology, Institute of Cancer Research, 15 Cotswold Rd, London SM2 5NG, United Kingdom
    Search for articles by this author
  • Author Footnotes
    1 Joint first authors.
    2 Joint corresponding authors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. The Cancer Genome Atlas Program - National Cancer Institute [Internet].
        (Available at:) (Accessed August 26, 2021)
      2. The Cancer Genome Atlas - Timeline and Milestones - National Cancer Institute [Internet].
        (Available at:) (Accessed August 26, 2021)
      3. The Cancer Genome Atlas - Molecular Characterization Platforms - National Cancer Institute [Internet].
        (Available at:) (Accessed September 20, 2021)
      4. The Cancer Genome Atlas - Publications - National Cancer Institute [Internet].
        (Available at:) (Accessed August 26, 2021)
      5. The Cancer Genome Atlas - Cancers Selected for Study - National Cancer Institute [Internet].
        (Available at:) (Accessed August 26, 2021)
        • Schöffski P.
        • Cornillie J.
        • Wozniak A.
        • et al.
        Soft tissue sarcoma: an update on systemic treatment options for patients with advanced disease.
        Oncol Res Treat. 2014; 37: 355-362
        • Dangoor A.
        • Seddon B.
        • Gerrand C.
        • et al.
        UK guidelines for the management of soft tissue sarcomas.
        Clin Sarcoma Res. 2016; 6: 1-26
        • Abeshouse A.
        • Adebamowo C.
        • Adebamowo S.N.
        • et al.
        Comprehensive and integrated genomic characterization of adult soft tissue sarcomas.
        Cell. 2017; 171: 950-965.e28
        • D’Angelo S.P.
        • Mahoney M.R.
        • Van Tine B.A.
        • et al.
        Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials.
        Lancet Oncol. 2018; 19: 416-426
        • Tawbi H.A.
        • Burgess M.
        • Bolejack V.
        • et al.
        Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial.
        Lancet Oncol. 2017; 18: 1493-1501
        • Wagner M.
        • He Q.
        • Zhang Y.
        • et al.
        796 A phase I/II trial combining avelumab and trabectedin for advanced liposarcoma and leiomyosarcoma.
        J Immunother Cancer. 2020; 8: A844
        • Jo V.Y.
        • Fletcher C.D.M.
        WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition.
        Pathology. 2014; 46: 95-104
        • Beck A.H.
        • Lee C.-H.
        • Witten D.M.
        • et al.
        Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling.
        Oncogene. 2010; 29: 845-854
        • Anderson N.D.
        • Babichev Y.
        • Fuligni F.
        • et al.
        Lineage-defined leiomyosarcoma subtypes emerge years before diagnosis and determine patient survival.
        Nat Commun. 2021; 12: 1-14
        • Van Der Graaf W.T.A.
        • Blay J.Y.
        • Chawla S.P.
        • et al.
        Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial.
        Lancet. 2012; 379: 1879-1886
        • Krassowski M.
        • Das V.
        • Sahu S.K.
        • et al.
        State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing.
        Front Genet. 2020; 0: 1598
        • Gomez-Cabrero D.
        • Abugessaisa I.
        • Maier D.
        • et al.
        Data integration in the era of omics: current and future challenges.
        BMC Syst Biol. 2014; 8: 1-10
        • Schmidt D.R.
        • Patel R.
        • Kirsch D.G.
        • et al.
        Metabolomics in cancer research and emerging applications in clinical oncology.
        CA Cancer J Clin. 2021; 71: 333-358
        • Noujaim J.
        • Payne L.S.
        • Judson I.
        • et al.
        Phosphoproteomics in translational research: a sarcoma perspective.
        Ann Oncol. 2016; 27: 787-794
        • Burns J.
        • Wilding C.P.
        • Jones R.L.
        • et al.
        Proteomic research in sarcomas – current status and future opportunities.
        Semin Cancer Biol. 2020; 61 (Academic Press): 56-70
        • Santos R.
        • Ursu O.
        • Gaulton A.
        • et al.
        A comprehensive map of molecular drug targets.
        Nat Rev Drug Discov. 2017; 16: 19
      6. Clinical Proteomic Tumor Analysis Consortium (CPTAC) | NCI Genomic Data Commons [Internet].
        (Available at:) (Accessed October 12, 2021)
        • Wiemer E.A.C.
        • Wozniak A.
        • Burger H.
        • et al.
        Identification of microRNA biomarkers for response of advanced soft tissue sarcomas to eribulin: Translational results of the EORTC 62052 trial.
        Eur J Cancer. 2017; 75: 33-40
        • Verweij J.
        • Baker L.
        Future treatment of soft tissue sarcomas will be driven by histological subtype and molecular aberrations.
        Eur J Cancer. 2010; 46: 863-868
        • Bourgeois J.
        • Knezevich S.
        • Mathers J.
        • et al.
        Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors.
        Am J Surg Pathol. 2000; 24: 937-946
        • Demetri G.
        • Antonescu C.
        • Bjerkehagen B.
        • et al.
        Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: expert recommendations from the World Sarcoma Network.
        Ann Oncol. 2020; 31: 1506-1517
        • Bertucci F.
        • De Nonneville A.
        • Finetti P.
        • et al.
        The Genomic Grade Index predicts postoperative clinical outcome in patients with soft-tissue sarcoma.
        Ann Oncol. 2018; 29: 459-465
        • Le Guellec S.
        • Lesluyes T.
        • Sarot E.
        • et al.
        Validation of the Complexity INdex in SARComas prognostic signature on formalin-fixed, paraffin-embedded, soft-tissue sarcomas.
        Ann Oncol. 2018; 29: 1828-1835
        • Merry E.
        • Thway K.
        • Jones R.L.
        • et al.
        Predictive and prognostic transcriptomic biomarkers in soft tissue sarcomas.
        NPJ Precis Oncol. 2021; 5
        • Bindea G.
        • Mlecnik B.
        • Tosolini M.
        • et al.
        Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.
        Immunity. 2013; 39: 782-795
        • Petitprez F.
        • de Reyniès A.
        • Keung E.Z.
        • et al.
        B cells are associated with survival and immunotherapy response in sarcoma.
        Nat. 2020; 577: 556-560
        • Casali P.
        • Abecassis N.
        • Aro H.
        • et al.
        Soft tissue and visceral sarcomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up.
        Ann Oncol Off J Eur Soc Med Oncol. 2018; 29: iv51-iv67
        • Callegaro D.
        • Miceli R.
        • Bonvalot S.
        • et al.
        Development and external validation of two nomograms to predict overall survival and distant metastases after surgical resection of localised soft tissue sarcomas of the extremities: a retrospective analysis.
        Lancet Oncol. 2016; 17: 671-680
        • Callegaro D.
        • Miceli R.
        • Bonvalot S.
        • et al.
        Development and external validation of a dynamic prognostic nomogram for primary extremity soft tissue sarcoma survivors.
        EClinicalMedicine. 2019; 17: 100215
        • Pasquali S.
        • Pizzamiglio S.
        • Touati N.
        • et al.
        The impact of chemotherapy on survival of patients with extremity and trunk wall soft tissue sarcoma: revisiting the results of the EORTC-STBSG 62931 randomized trial.
        Eur J Cancer. 2019; 109: 51-60
        • Pasquali S.
        • Palmerini E.
        • Quagliuolo V.
        • et al.
        Neoadjuvant chemotherapy in high risk soft tissue sarcomas: a sarculator-based risk stratification analysis of the randomized trial ISG-STS 1001.
        Cancer. 2022; 128: 85-93
      7. NCT03449901. https://www.clinicaltrials.gov/ct2/show/NCT03449901?term=brian+van+tine&draw=3&rank=22.

        • Prudner B.C.
        • Rathore R.
        • Robinson A.M.
        • et al.
        Arginine Starvation and Docetaxel Induce c-Myc–Driven hENT1 Surface Expression to Overcome Gemcitabine Resistance in ASS1-Negative Tumors.
        Clin Cancer Res. 2019; 25: 5122-5134