Advertisement
Review Article| Volume 32, ISSUE 1, P199-220, January 2023

Advances in Endocrine Surgery

Published:November 03, 2022DOI:https://doi.org/10.1016/j.soc.2022.08.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Fuchs H.E.
        • et al.
        Cancer statistics.
        CA Cancer J Clin. 2022; 72: 7-33
      1. Surveillance, Epidemiology, and End Results (SEER) Program Populations (1969-2019). National Cancer Institute, DCCPS.
        (Available at:)
        • Shaha A.R.
        Extent of surgery for papillary thyroid carcinoma: the debate continues: comment on "surgery for papillary thyroid carcinoma.
        Arch Otolaryngol Head Neck Surg. 2010; 136: 1061-1063
        • Perrier N.D.
        • Brierley J.D.
        • Tuttle R.M.
        Differentiated and anaplastic thyroid carcinoma: Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual.
        CA Cancer J Clin. 2018; 68: 55-63
        • Tam S.
        • Boonsripitayanon M.
        • Amit M.
        • et al.
        Survival in Differentiated Thyroid Cancer: Comparing the AJCC Cancer Staging Seventh and Eighth Editions.
        Thyroid. 2018; 28: 1301-1310
        • Lang B.H.
        • Lo C.Y.
        • Chan W.F.
        • et al.
        Staging systems for papillary thyroid carcinoma: a review and comparison.
        Ann Surg Mar. 2007; 245: 366-378
        • Dwamena S.
        • Patel N.
        • Egan R.
        • et al.
        Impact of the change from the seventh to eighth edition of the AJCC TNM classification of malignant tumours and comparison with the MACIS prognostic scoring system in non-medullary thyroid cancer.
        BJS Open. 2019; 3: 623-628
        • Hay I.D.
        • Grant C.S.
        • Taylor W.F.
        • et al.
        Ipsilateral lobectomy versus bilateral lobar resection in papillary thyroid carcinoma: a retrospective analysis of surgical outcome using a novel prognostic scoring system.
        Surgery. 1987; 102: 1088-1095
        • Cady B.
        • Rossi R.
        An expanded view of risk-group definition in differentiated thyroid carcinoma.
        Surgery. 1988; 104: 947-953
        • Hay I.D.
        • Bergstralh E.J.
        • Goellner J.R.
        • et al.
        Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989.
        Surgery. 1993; 114 (; discussion 1057-8): 1050-1057
        • Shah J.P.
        • Loree T.R.
        • Dharker D.
        • et al.
        Lobectomy versus total thyroidectomy for differentiated carcinoma of the thyroid: a matched-pair analysis.
        Am J Surg. 1993; 166: 331-335
        • Hay I.D.
        • Grant C.S.
        • Bergstralh E.J.
        • et al.
        Unilateral total lobectomy: is it sufficient surgical treatment for patients with AMES low-risk papillary thyroid carcinoma?.
        Surgery. 1998; 124 ([discussion: 964-6]): 958-964
        • Bilimoria K.Y.
        • Bentrem D.J.
        • Ko C.Y.
        • et al.
        Extent of surgery affects survival for papillary thyroid cancer.
        Ann Surg. 2007; 246 ([discussion: 381-4]): 375-381
        • David S.
        • Cooper G.M.D.
        • Haugen Bryan R.
        • Kloos Richard T.
        • et al.
        Tuttle. Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer.
        Thyroid. 2009; 19: 1167-1214
        • Barney B.M.
        • Hitchcock Y.J.
        • Sharma P.
        • et al.
        Overall and cause-specific survival for patients undergoing lobectomy, near-total, or total thyroidectomy for differentiated thyroid cancer.
        Head Neck. 2011; 33: 645-649
        • Mendelsohn A.H.
        • Elashoff D.A.
        • Abemayor E.
        • et al.
        Surgery for papillary thyroid carcinoma: is lobectomy enough?.
        Arch Otolaryngol Head Neck Surg. 2010; 136: 1055-1061
        • Nixon I.J.
        • Ganly I.
        • Patel S.G.
        • et al.
        Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy.
        Surgery. 2012; 151: 571-579
        • Adam M.A.
        • Pura J.
        • Gu L.
        • et al.
        Extent of surgery for papillary thyroid cancer is not associated with survival: an analysis of 61,775 patients.
        Ann Surg. 2014; 260 ([discussion: 605-7]): 601-605
        • Adam M.A.
        • Pura J.
        • Goffredo P.
        • et al.
        Impact of extent of surgery on survival for papillary thyroid cancer patients younger than 45 years.
        J Clin Endocrinol Metab. 2015; 100: 115-121
        • Haugen B.R.
        • Alexander E.K.
        • Bible K.C.
        • et al.
        2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.
        Thyroid : official J Am Thyroid Assoc. 2016; 26: 1-133
        • Tufano R.P.
        • Teixeira G.V.
        • Bishop J.
        • et al.
        BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis.
        Medicine (Baltimore). 2012; 91: 274-286
        • Xing M.
        • Alzahrani A.S.
        • Carson K.A.
        • et al.
        Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer.
        Jama. 2013; 309: 1493-1501
        • Chen Y.
        • Sadow P.M.
        • Suh H.
        • et al.
        BRAF(V600E) Is Correlated with Recurrence of Papillary Thyroid Microcarcinoma: A Systematic Review, Multi-Institutional Primary Data Analysis, and Meta-Analysis.
        Thyroid. 2016; 26: 248-255
        • Niederer-Wüst S.M.
        • Jochum W.
        • Förbs D.
        • et al.
        Impact of clinical risk scores and BRAF V600E mutation status on outcome in papillary thyroid cancer.
        Surgery. 2015; 157: 119-125
        • Melo M.
        • da Rocha A.G.
        • Vinagre J.
        • et al.
        TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas.
        J Clin Endocrinol Metab. 2014; 99: E754-E765
        • Xing M.
        • Liu R.
        • Liu X.
        • et al.
        BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence.
        J Clin Oncol. 2014; 32: 2718-2726
        • Alexander E.K.
        • Kennedy G.C.
        • Baloch Z.W.
        • et al.
        Preoperative diagnosis of benign thyroid nodules with indeterminate cytology.
        N Engl J Med. 2012; 367: 705-715
        • Nikiforov Y.E.
        • Carty S.E.
        • Chiosea S.I.
        • et al.
        Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology.
        Thyroid. 2015; 25: 1217-1223
        • Livhits M.J.
        • Zhu C.Y.
        • Kuo E.J.
        • et al.
        Effectiveness of Molecular Testing Techniques for Diagnosis of Indeterminate Thyroid Nodules: A Randomized Clinical Trial.
        JAMA Oncol. 2021; 7: 70-77
        • Ito Y.
        • Uruno T.
        • Nakano K.
        • et al.
        An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid.
        Thyroid. 2003; 13: 381-387
        • Ito Y.
        • Miyauchi A.
        • Inoue H.
        • et al.
        An observational trial for papillary thyroid microcarcinoma in Japanese patients.
        World J Surg. 2010; 34: 28-35
        • Brito J.P.
        • Ito Y.
        • Miyauchi A.
        • et al.
        A Clinical Framework to Facilitate Risk Stratification When Considering an Active Surveillance Alternative to Immediate Biopsy and Surgery in Papillary Microcarcinoma.
        Thyroid. 2016; 26: 144-149
        • Applewhite M.K.
        • James B.C.
        • Kaplan S.P.
        • et al.
        Quality of Life in Thyroid Cancer is Similar to That of Other Cancers with Worse Survival.
        World J Surg. 2016; 40: 551-561
        • Mongelli M.N.
        • Giri S.
        • Peipert B.J.
        • et al.
        Financial burden and quality of life among thyroid cancer survivors.
        Surgery. 2020; 167: 631-637
        • Sawka A.M.
        • Ghai S.
        • Rotstein L.
        • et al.
        A Quantitative Analysis Examining Patients' Choice of Active Surveillance or Surgery for Managing Low-Risk Papillary Thyroid Cancer.
        Thyroid. 2022; https://doi.org/10.1089/thy.2021.0485
        • Noguchi S.
        • Noguchi A.
        • Murakami N.
        Papillary carcinoma of the thyroid. II. Value of prophylactic lymph node excision.
        Cancer. 1970; 26: 1061-1064
        • Kouvaraki M.A.
        • Shapiro S.E.
        • Fornage B.D.
        • et al.
        Role of preoperative ultrasonography in the surgical management of patients with thyroid cancer.
        Surgery. 2003; 134: 946-954
        • Popadich A.
        • Levin O.
        • Lee J.C.
        • et al.
        A multicenter cohort study of total thyroidectomy and routine central lymph node dissection for cN0 papillary thyroid cancer.
        Surgery. 2011; 150: 1048-1057
        • Hughes D.T.
        • Rosen J.E.
        • Evans D.B.
        • et al.
        Prophylactic Central Compartment Neck Dissection in Papillary Thyroid Cancer and Effect on Locoregional Recurrence.
        Ann Surg Oncol. 2018; 25: 2526-2534
        • Wang T.S.
        • Cheung K.
        • Farrokhyar F.
        • et al.
        A meta-analysis of the effect of prophylactic central compartment neck dissection on locoregional recurrence rates in patients with papillary thyroid cancer.
        Ann Surg Oncol. 2013; 20: 3477-3483
        • Tuttle M.
        • Morris L.
        • Haugen B.
        • et al.
        Thyroid-differentiated and anaplastic carcinoma (Chapter 73).
        Springer International Publishing, 2017
        • Nixon I.J.
        • Wang L.Y.
        • Palmer F.L.
        • et al.
        The impact of nodal status on outcome in older patients with papillary thyroid cancer.
        Surgery. 2014; 156: 137-146
        • Shen W.T.
        • Ogawa L.
        • Ruan D.
        • et al.
        Central neck lymph node dissection for papillary thyroid cancer: the reliability of surgeon judgment in predicting which patients will benefit.
        Surgery. 2010; 148: 398-403
        • Lee D.Y.
        • Oh K.H.
        • Cho J.G.
        • et al.
        The Benefits and Risks of Prophylactic Central Neck Dissection for Papillary Thyroid Carcinoma: Prospective Cohort Study.
        Int J Endocrinol. 2015; 2015: 571480
        • Viola D.
        • Materazzi G.
        • Valerio L.
        • et al.
        Prophylactic central compartment lymph node dissection in papillary thyroid carcinoma: clinical implications derived from the first prospective randomized controlled single institution study.
        J Clin Endocrinol Metab. 2015; 100: 1316-1324
        • Kim B.Y.
        • Choi N.
        • Kim S.W.
        • et al.
        Randomized trial of prophylactic ipsilateral central lymph node dissection in patients with clinically node negative papillary thyroid microcarcinoma.
        Eur Arch Otorhinolaryngol. 2020; 277: 569-576
        • Sippel R.S.
        • Robbins S.E.
        • Poehls J.L.
        • et al.
        A Randomized Controlled Clinical Trial: No Clear Benefit to Prophylactic Central Neck Dissection in Patients With Clinically Node Negative Papillary Thyroid Cancer.
        Ann Surg. 2020; 272: 496-503
        • Ahn J.H.
        • Kwak J.H.
        • Yoon S.G.
        • et al.
        A prospective randomized controlled trial to assess the efficacy and safety of prophylactic central compartment lymph node dissection in papillary thyroid carcinoma.
        Surgery. 2022; 171: 182-189
        • Sanabria A.
        • Betancourt C.
        • Sanchez J.G.
        • et al.
        Prophylactic Central Neck Lymph Node Dissection in Low-Risk Thyroid Carcinoma Patients Does not Decrease the Incidence of Locoregional Recurrence: A Meta-Analysis of Randomized Trials.
        Ann Surg. 2022; https://doi.org/10.1097/SLA.0000000000005388
        • Song E.
        • Han M.
        • Oh H.S.
        • et al.
        Lobectomy Is Feasible for 1-4 cm Papillary Thyroid Carcinomas: A 10-Year Propensity Score Matched-Pair Analysis on Recurrence.
        Thyroid. 2019; 29: 64-70
        • Wilhelm S.M.
        • Wang T.S.
        • Ruan D.T.
        • et al.
        The American Association of Endocrine Surgeons Guidelines for Definitive Management of Primary Hyperparathyroidism.
        JAMA Surg. 2016; 151: 959-968
        • Kebebew E.
        • Hwang J.
        • Reiff E.
        • et al.
        Predictors of single-gland vs multigland parathyroid disease in primary hyperparathyroidism: a simple and accurate scoring model.
        Arch Surg. 2006; 141 ([discussion: 782]): 777-782
        • Broome D.T.
        • Naples R.
        • Bailey R.
        • et al.
        Use of Preoperative Imaging in Primary Hyperparathyroidism.
        J Clin Endocrinol Metab. 2021; 106: e328-e337
        • Cheung K.
        • Wang T.S.
        • Farrokhyar F.
        • et al.
        A meta-analysis of preoperative localization techniques for patients with primary hyperparathyroidism.
        Ann Surg Oncol. 2012; 19: 577-583
        • Vu T.H.
        • Schellingerhout D.
        • Guha-Thakurta N.
        • et al.
        Solitary Parathyroid Adenoma Localization in Technetium Tc99m Sestamibi SPECT and Multiphase Multidetector 4D CT.
        AJNR Am J Neuroradiol. 2019; 40: 142-149
        • Kuo L.E.
        • Bird S.H.
        • Lubitz C.C.
        • et al.
        Four-dimensional computed tomography (4D-CT) for preoperative parathyroid localization: A good study but are we using it?.
        Am J Surg. 2022; 223: 694-698
        • Abbott D.E.
        • Cantor S.B.
        • Grubbs E.G.
        • et al.
        Outcomes and economic analysis of routine preoperative 4-dimensional CT for surgical intervention in de novo primary hyperparathyroidism: does clinical benefit justify the cost?.
        J Am Coll Surg. 2012; 214 ([discussion: 637-9]): 629-637
        • Lubitz C.C.
        • Stephen A.E.
        • Hodin R.A.
        • et al.
        Preoperative localization strategies for primary hyperparathyroidism: an economic analysis.
        Ann Surg Oncol. 2012; 19: 4202-4209
        • Wang T.S.
        • Cheung K.
        • Farrokhyar F.
        • et al.
        Would scan, but which scan? A cost-utility analysis to optimize preoperative imaging for primary hyperparathyroidism.
        Surgery. 2011; 150: 1286-1294
        • Graves C.E.
        • Hope T.A.
        • Kim J.
        • et al.
        Superior sensitivity of (18)F-fluorocholine: PET localization in primary hyperparathyroidism.
        Surgery. 2022; 171: 47-54
        • Latge A.
        • Riehm S.
        • Vix M.
        • et al.
        (18)F-Fluorocholine PET and 4D-CT in Patients with Persistent and Recurrent Primary Hyperparathyroidism.
        Diagnostics (Basel). 2021; 11
        • Chiu B.
        • Sturgeon C.
        • Angelos P.
        Which intraoperative parathyroid hormone assay criterion best predicts operative success? A study of 352 consecutive patients.
        Arch Surg May. 2006; 141 ([discussion: 487-8]): 483-487
        • Di Marco A.
        • Mechera R.
        • Glover A.
        • et al.
        Focused parathyroidectomy without intraoperative parathyroid hormone measurement in primary hyperparathyroidism: Still a valid approach?.
        Surgery. 2021; 170: 1383-1388
        • McWade M.A.
        • Paras C.
        • White L.M.
        • et al.
        A novel optical approach to intraoperative detection of parathyroid glands.
        Surgery. 2013; 154 ([discussion: 1377]): 1371-1377
        • McWade M.A.
        • Sanders M.E.
        • Broome J.T.
        • et al.
        Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection.
        Surgery. 2016; 159: 193-202
        • Akbulut S.
        • Erten O.
        • Kim Y.S.
        • et al.
        Development of an algorithm for intraoperative autofluorescence assessment of parathyroid glands in primary hyperparathyroidism using artificial intelligence.
        Surgery. 2021; 170: 454-461
        • Squires M.H.
        • Jarvis R.
        • Shirley L.A.
        • et al.
        Intraoperative Parathyroid Autofluorescence Detection in Patients with Primary Hyperparathyroidism.
        Ann Surg Oncol. 2019; 26: 1142-1148
        • Kim D.H.
        • Kim S.W.
        • Kang P.
        • et al.
        Near-Infrared Autofluorescence Imaging May Reduce Temporary Hypoparathyroidism in Patients Undergoing Total Thyroidectomy and Central Neck Dissection.
        Thyroid. 2021; 31: 1400-1408
        • Cetani F.
        • Pardi E.
        • Marcocci C.
        Parathyroid Carcinoma.
        Front Horm Res. 2019; 51: 63-76
        • Silva-Figueroa A.M.
        • Hess K.R.
        • Williams M.D.
        • et al.
        Prognostic Scoring System to Risk Stratify Parathyroid Carcinoma.
        J Am Coll Surg. 2017; https://doi.org/10.1016/j.jamcollsurg.2017.01.060
        • Asare E.A.
        • Silva-Figueroa A.
        • Hess K.R.
        • et al.
        Risk of Distant Metastasis in Parathyroid Carcinoma and Its Effect on Survival: A Retrospective Review from a High-Volume Center.
        Ann Surg Oncol. 2019; 26: 3593-3599https://doi.org/10.1245/s10434-019-07451-3
        • Hsu K.T.
        • Sippel R.S.
        • Chen H.
        • et al.
        Is central lymph node dissection necessary for parathyroid carcinoma?.
        Surgery. 2014; 156 (; discussion 1341): 1336-1341https://doi.org/10.1016/j.surg.2014.08.005
        • Salcuni A.S.
        • Cetani F.
        • Guarnieri V.
        • et al.
        Parathyroid carcinoma.
        Best Pract Res Clin Endocrinol Metab. 2018; 32: 877-889https://doi.org/10.1016/j.beem.2018.11.002
        • Kutahyalioglu M.
        • Nguyen H.T.
        • Kwatampora L.
        • et al.
        Genetic profiling as a clinical tool in advanced parathyroid carcinoma.
        J Cancer Res Clin Oncol. 2019; 145: 1977-1986https://doi.org/10.1007/s00432-019-02945-9
        • Kang H.
        • Pettinga D.
        • Schubert A.D.
        • et al.
        Genomic Profiling of Parathyroid Carcinoma Reveals Genomic Alterations Suggesting Benefit from Therapy.
        Oncologist. 2019; 24: 791-797
        • Silva-Figueroa A.
        • Villalobos P.
        • Williams M.D.
        • et al.
        Characterizing parathyroid carcinomas and atypical neoplasms based on the expression of programmed death-ligand 1 expression and the presence of tumor-infiltrating lymphocytes and macrophages.
        Surg Nov. 2018; 164: 960-964
        • Park D.
        • Airi R.
        • Sherman M.
        Microsatellite instability driven metastatic parathyroid carcinoma managed with the anti-PD1 immunotherapy, pembrolizumab.
        BMJ Case Rep. 2020; : 13https://doi.org/10.1136/bcr-2020-235293
        • Lenschow C.
        • Fuss C.T.
        • Kircher S.
        • et al.
        Case Report: Abdominal Lymph Node Metastases of Parathyroid Carcinoma: Diagnostic Workup, Molecular Diagnosis, and Clinical Management.
        Front Endocrinol (Lausanne). 2021; 12: 643328
        • Kebebew E.
        • Siperstein A.E.
        • Duh Q.Y.
        Laparoscopic adrenalectomy: the optimal surgical approach.
        J Laparoendosc Adv Surg Tech A. 2001; 11: 409-413https://doi.org/10.1089/10926420152761941
        • Lee J.
        • El-Tamer M.
        • Schifftner T.
        • et al.
        Open and laparoscopic adrenalectomy: analysis of the National Surgical Quality Improvement Program.
        J Am Coll Surg. 2008; 206 ([discussion: 959-61]): 953-959
        • Elfenbein D.M.
        • Scarborough J.E.
        • Speicher P.J.
        • et al.
        Comparison of laparoscopic versus open adrenalectomy: results from American College of Surgeons-National Surgery Quality Improvement Project.
        J Surg Res. 2013; 184: 216-220
        • Romero Arenas M.A.
        • Sui D.
        • Grubbs E.G.
        • et al.
        Adrenal metastectomy is safe in selected patients.
        World J Surg. 2014; 38: 1336-1342
        • Lindeman B.
        • Gawande A.A.
        • Moore Jr., F.D.
        • et al.
        The Posterior Adiposity Index: A Quantitative Selection Tool for Adrenalectomy Approach.
        J Surg Res. 2019; 233: 26-31
        • Chai Y.J.
        • Yu H.W.
        • Song R.Y.
        • et al.
        Lateral Transperitoneal Adrenalectomy Versus Posterior Retroperitoneoscopic Adrenalectomy for Benign Adrenal Gland Disease: Randomized Controlled Trial at a Single Tertiary Medical Center.
        Ann Surg. 2019; 269: 842-848
        • Barczyński M.
        • Konturek A.
        • Nowak W.
        Randomized clinical trial of posterior retroperitoneoscopic adrenalectomy versus lateral transperitoneal laparoscopic adrenalectomy with a 5-year follow-up.
        Ann Surg Nov. 2014; 260 (; discussion 747-8): 740-747
        • Kozłowski T.
        • Choromanska B.
        • Wojskowicz P.
        • et al.
        Laparoscopic adrenalectomy: lateral transperitoneal versus posterior retroperitoneal approach - prospective randomized trial.
        Wideochir Inne Tech Maloinwazyjne. 2019; 14: 160-169
        • Ma W.
        • Mao Y.
        • Zhuo R.
        • et al.
        Surgical outcomes of a randomized controlled trial compared robotic versus laparoscopic adrenalectomy for pheochromocytoma.
        Eur J Surg Oncol. 2020; 46: 1843-1847
        • Margonis G.A.
        • Kim Y.
        • Prescott J.D.
        • et al.
        Adrenocortical Carcinoma: Impact of Surgical Margin Status on Long-Term Outcomes.
        Ann Surg Oncol. 2016; 23: 134-141
        • Delozier O.M.
        • Stiles Z.E.
        • Deschner B.W.
        • et al.
        Implications of Conversion during Attempted Minimally Invasive Adrenalectomy for Adrenocortical Carcinoma.
        Ann Surg Oncol. 2021; 28: 492-501
        • Huynh K.T.
        • Lee D.Y.
        • Lau B.J.
        • et al.
        Impact of Laparoscopic Adrenalectomy on Overall Survival in Patients with Nonmetastatic Adrenocortical Carcinoma.
        J Am Coll Surg. 2016; 223: 485-492
        • Grubbs E.G.
        • Callender G.G.
        • Xing Y.
        • et al.
        Recurrence of adrenal cortical carcinoma following resection: surgery alone can achieve results equal to surgery plus mitotane.
        Ann Surg Oncol. 2010; 17: 263-270
        • Fassnacht M.
        • Dekkers O.M.
        • Else T.
        • et al.
        European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors.
        Eur J Endocrinol. 2018; 179: G1-G46
        • Wachtel H.
        • Roses R.E.
        • Kuo L.E.
        • et al.
        Adrenalectomy for Secondary Malignancy: Patients, Outcomes, and Indications.
        Ann Surg. 2021; 274: 1073-1080
        • Mittendorf E.A.
        • Lim S.J.
        • Schacherer C.W.
        • et al.
        Melanoma adrenal metastasis: natural history and surgical management.
        Am J Surg Mar. 2008; 195 ([discussion: 368-9]): 363-368
        • Vazquez B.J.
        • Richards M.L.
        • Lohse C.M.
        • et al.
        Adrenalectomy improves outcomes of selected patients with metastatic carcinoma.
        World J Surg. 2012; 36: 1400-1405
        • Vlk E.
        • Ebbehoj A.
        • Donskov F.
        • et al.
        Outcome and prognosis after adrenal metastasectomy: nationwide study.
        BJS Open. 2022; : 6https://doi.org/10.1093/bjsopen/zrac047
        • Russo A.E.
        • Untch B.R.
        • Kris M.G.
        • et al.
        Adrenal Metastasectomy in the Presence and Absence of Extraadrenal Metastatic Disease.
        Ann Surg Aug. 2019; 270: 373-377
        • Funder J.W.
        • Carey R.M.
        • Mantero F.
        • et al.
        The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline.
        J Clin Endocrinol Metab. 2016; 101: 1889-1916
        • Clark 3rd, D.
        • Ahmed M.I.
        • Calhoun D.A.
        Resistant hypertension and aldosterone: an update.
        Can J Cardiol. 2012; 28: 318-325
        • Dekkers T.
        • Prejbisz A.
        • Kool L.J.S.
        • et al.
        Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial.
        Lancet Diabetes Endocrinol. 2016; 4: 739-746
        • Lim V.
        • Guo Q.
        • Grant C.S.
        • et al.
        Accuracy of adrenal imaging and adrenal venous sampling in predicting surgical cure of primary aldosteronism.
        J Clin Endocrinol Metab. 2014; 99: 2712-2719
        • Zhu L.
        • Zhang Y.
        • Zhang H.
        • et al.
        Comparison between adrenal venous sampling and computed tomography in the diagnosis of primary aldosteronism and in the guidance of adrenalectomy.
        Medicine (Baltimore). 2016; 95: e4986
        • Umakoshi H.
        • Ogasawara T.
        • Takeda Y.
        • et al.
        Accuracy of adrenal computed tomography in predicting the unilateral subtype in young patients with hypokalaemia and elevation of aldosterone in primary aldosteronism.
        Clin Endocrinol (Oxf). 2018; 88: 645-651
        • Liu C.
        • Lv Q.
        • Chen X.
        • et al.
        Preoperative selective vs non-selective α-blockade in PPGL patients undergoing adrenalectomy.
        Endocr Connect. 2017; 6: 830-838
        • Buitenwerf E.
        • Osinga T.E.
        • Timmers H.
        • et al.
        Efficacy of α-Blockers on Hemodynamic Control during Pheochromocytoma Resection: A Randomized Controlled Trial.
        J Clin Endocrinol Metab. 2020; 105: 2381-2391
        • Kong H.
        • Li N.
        • Yang X.C.
        • et al.
        Nonselective Compared With Selective α-Blockade Is Associated With Less Intraoperative Hypertension in Patients With Pheochromocytomas and Paragangliomas: A Retrospective Cohort Study With Propensity Score Matching.
        Anesth Analg. 2021; 132: 140-149
        • Siddiqi H.K.
        • Yang H.Y.
        • Laird A.M.
        • et al.
        Utility of oral nicardipine and magnesium sulfate infusion during preparation and resection of pheochromocytomas.
        Surgery. 2012; 152: 1027-1036
        • Brunaud L.
        • Boutami M.
        • Nguyen-Thi P.L.
        • et al.
        Both preoperative alpha and calcium channel blockade impact intraoperative hemodynamic stability similarly in the management of pheochromocytoma.
        Surgery. 2014; 156 ([discussion: 1417-8]): 1410-1417
        • Groeben H.
        • Nottebaum B.J.
        • Alesina P.F.
        • et al.
        Perioperative α-receptor blockade in phaeochromocytoma surgery: an observational case series.
        Br J Anaesth Feb. 2017; 118: 182-189
        • Roman-Gonzalez A.
        • Zhou S.
        • Ayala-Ramirez M.
        • et al.
        Impact of Surgical Resection of the Primary Tumor on Overall Survival in Patients With Metastatic Pheochromocytoma or Sympathetic Paraganglioma.
        Ann Surg. 2018; 268: 172-178
        • Fishbein L.
        • Del Rivero J.
        • Else T.
        • et al.
        The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Management of Metastatic and/or Unresectable Pheochromocytoma and Paraganglioma.
        Pancreas. 2021; 50: 469-493
        • Niemeijer N.D.
        • Alblas G.
        • van Hulsteijn L.T.
        • et al.
        Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: systematic review and meta-analysis.
        Clin Endocrinol (Oxf). 2014; 81: 642-651
        • Pryma D.A.
        • Chin B.B.
        • Noto R.B.
        • et al.
        Efficacy and Safety of High-Specific-Activity (131)I-MIBG Therapy in Patients with Advanced Pheochromocytoma or Paraganglioma.
        J Nucl Med. 2019; 60: 623-630
        • Severi S.
        • Bongiovanni A.
        • Ferrara M.
        • et al.
        Peptide receptor radionuclide therapy in patients with metastatic progressive pheochromocytoma and paraganglioma: long-term toxicity, efficacy and prognostic biomarker data of phase II clinical trials.
        ESMO Open. 2021; 6: 100171
        • Jimenez C.
        • Subbiah V.
        • Stephen B.
        • et al.
        Phase II Clinical Trial of Pembrolizumab in Patients with Progressive Metastatic Pheochromocytomas and Paragangliomas.
        Cancers (Basel). 2020; : 12https://doi.org/10.3390/cancers12082307
        • Fishbein L.
        • Ben-Maimon S.
        • Keefe S.
        • et al.
        SDHB mutation carriers with malignant pheochromocytoma respond better to CVD.
        Endocr Relat Cancer. 2017; 24: L51-L55
        • Hadoux J.
        • Favier J.
        • Scoazec J.Y.
        • et al.
        SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma.
        Int J Cancer. 2014; 135: 2711-2720
        • Ayala-Ramirez M.
        • Chougnet C.N.
        • Habra M.A.
        • et al.
        Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas.
        J Clin Endocrinol Metab. 2012; 97: 4040-4050
        • Fishbein L.
        • Leshchiner I.
        • Walter V.
        • et al.
        Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma.
        Cancer Cell. 2017; 31: 181-193
        • Neumann H.P.H.
        • Tsoy U.
        • Bancos I.
        • et al.
        Comparison of Pheochromocytoma-Specific Morbidity and Mortality Among Adults With Bilateral Pheochromocytomas Undergoing Total Adrenalectomy vs Cortical-Sparing Adrenalectomy.
        JAMA Netw Open. 2019; 2: e198898
        • Grubbs E.G.
        • Rich T.A.
        • Ng C.
        • et al.
        Long-term outcomes of surgical treatment for hereditary pheochromocytoma.
        J Am Coll Surg. 2013; 216: 280-289
        • Rossi R.
        • Tauchmanova L.
        • Luciano A.
        • et al.
        Subclinical Cushing's syndrome in patients with adrenal incidentaloma: clinical and biochemical features.
        J Clin Endocrinol Metab. 2000; 85: 1440-1448
        • Prete A.
        • Subramanian A.
        • Bancos I.
        • et al.
        Cardiometabolic Disease Burden and Steroid Excretion in Benign Adrenal Tumors : A Cross-Sectional Multicenter Study.
        Ann Intern Med. 2022; 175: 325-334
        • Athimulam S.
        • Delivanis D.
        • Thomas M.
        • et al.
        The Impact of Mild Autonomous Cortisol Secretion on Bone Turnover Markers.
        J Clin Endocrinol Metab. 2020; 105: 1469-1477
        • Iacobone M.
        • Citton M.
        • Viel G.
        • et al.
        Adrenalectomy may improve cardiovascular and metabolic impairment and ameliorate quality of life in patients with adrenal incidentalomas and subclinical Cushing's syndrome.
        Surgery. 2012; 152: 991-997
        • Pisano G.
        • Calò P.G.
        • Erdas E.
        • et al.
        Adrenal incidentalomas and subclinical Cushing syndrome: indications to surgery and results in a series of 26 laparoscopic adrenalectomies.
        Ann Ital Chir. 2015; 86: 406-412
        • Toniato A.
        • Merante-Boschin I.
        • Opocher G.
        • et al.
        Surgical versus conservative management for subclinical Cushing syndrome in adrenal incidentalomas: a prospective randomized study.
        Ann Surg. 2009; 249: 388-391
        • Iacobone M.
        • Albiger N.
        • Scaroni C.
        • et al.
        The role of unilateral adrenalectomy in ACTH-independent macronodular adrenal hyperplasia (AIMAH).
        World J Surg. 2008; 32: 882-889
        • Debillon E.
        • Velayoudom-Cephise F.L.
        • Salenave S.
        • et al.
        Unilateral Adrenalectomy as a First-Line Treatment of Cushing's Syndrome in Patients With Primary Bilateral Macronodular Adrenal Hyperplasia.
        J Clin Endocrinol Metab. 2015; 100: 4417-4424
        • Xu Y.
        • Rui W.
        • Qi Y.
        • et al.
        The role of unilateral adrenalectomy in corticotropin-independent bilateral adrenocortical hyperplasias.
        World J Surg. 2013; 37: 1626-1632
        • Osswald A.
        • Quinkler M.
        • Di Dalmazi G.
        • et al.
        Long-Term Outcome of Primary Bilateral Macronodular Adrenocortical Hyperplasia After Unilateral Adrenalectomy.
        J Clin Endocrinol Metab. 2019; 104: 2985-2993
        • Zhang Y.
        • Li H.
        Classification and surgical treatment for 180 cases of adrenocortical hyperplastic disease.
        Int J Clin Exp Med. 2015; 8: 19311-19317
        • Foster T.
        • Bancos I.
        • McKenzie T.
        • et al.
        Early assessment of postoperative adrenal function is necessary after adrenalectomy for mild autonomous cortisol secretion.
        Surgery. 2021; 169: 150-154
        • Di Dalmazi G.
        • Berr C.M.
        • Fassnacht M.
        • et al.
        Adrenal function after adrenalectomy for subclinical hypercortisolism and Cushing's syndrome: a systematic review of the literature.
        J Clin Endocrinol Metab. 2014; 99: 2637-2645
        • DeLozier O.M.
        • Dream S.Y.
        • Findling J.W.
        • et al.
        Selective Glucocorticoid Replacement Following Unilateral Adrenalectomy for Hypercortisolism and Primary Aldosteronism.
        J Clin Endocrinol Metab. 2022; 107: e538-e547