Advertisement
Review Article| Volume 32, ISSUE 2, P327-342, April 2023

Download started.

Ok

Minimally Invasive Pancreatectomy

Robotic and Laparoscopic Developments

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Surgical Oncology Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoehn R.S.
        • Nassour I.
        • Adam M.A.
        • et al.
        National Trends in Robotic Pancreas Surgery.
        J Gastrointest Surg. 2021; 25: 983-990
        • Stewart C.L.
        • Ituarte P.H.G.
        • Melstrom K.A.
        • et al.
        Robotic surgery trends in general surgical oncology from the National Inpatient Sample.
        Surg Endosc. 2019; 33: 2591-2601
        • de Rooij T.
        • van Hilst J.
        • van Santvoort H.
        • et al.
        Minimally invasive versus open distal pancreatectomy (LEOPARD): a multicenter patient-blinded randomized controlled trial.
        Ann Surg. 2019; 269: 2-9
        • Palanivelu C.
        • Senthilnathan P.
        • Sabnis S.C.
        • et al.
        Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours.
        Br J Surg. 2017; 104: 1443-1450
        • Poves I.
        • Burdío F.
        • Morató O.
        • et al.
        Comparison of perioperative outcomes between laparoscopic and open approach for pancreatoduodenectomy: the padulap randomized controlled trial.
        Ann Surg. 2018; 268: 731-739
        • van Hilst J.
        • de Rooij T.
        • Bosscha K.
        • et al.
        Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial.
        Lancet Gastroenterol Hepatol. 2019; 4: 199-207
        • Kim J.
        • Hwang H.K.
        • Lee W.J.
        • et al.
        Minimally invasive vs open pancreatectomy for nonfunctioning pancreatic neuroendocrine tumors.
        World J Gastrointest Oncol. 2020; 12: 1133-1145
        • Zhang X.-F.
        • Lopez-Aguiar A.G.
        • Poultsides G.
        • et al.
        Minimally invasive versus open distal pancreatectomy for pancreatic neuroendocrine tumors: an analysis from the U.S. neuroendocrine tumor study group.
        J Surg Oncol. 2019; 120: 231-240
        • Ferraro V.
        • Tedeschi M.
        • Laera L.
        • et al.
        The role of laparoscopic surgery in localized pancreatic neuroendocrine tumours.
        Curr Treat Options Oncol. 2021; 22: 27
        • de Rooij T.
        • van Hilst J.
        • Topal B.
        • et al.
        Outcomes of a multicenter training program in laparoscopic pancreatoduodenectomy (LAELAPS-2).
        Ann Surg. 2019; 269: 344-350
        • de Rooij T.
        • van Hilst J.
        • Boerma D.
        • et al.
        Impact of a nationwide training program in minimally invasive distal pancreatectomy (LAELAPS).
        Ann Surg. 2016; 264: 754-762
        • Zwart M.J.W.
        • Nota C.L.M.
        • de Rooij T.
        • et al.
        Outcomes of a multicenter training program in robotic pancreatoduodenectomy (LAELAPS-3).
        Ann Surg. 2022; https://doi.org/10.1097/SLA.0000000000004783
        • Stocchi L.
        • Nelson H.
        • Sargent D.J.
        • et al.
        Impact of surgical and pathologic variables in rectal cancer: a United States community and cooperative group report.
        J Clin Oncol. 2001; 19: 3895-3902
        • Katz M.H.G.
        • Merchant N.B.
        • Brower S.
        • et al.
        Standardization of surgical and pathologic variables is needed in multicenter trials of adjuvant therapy for pancreatic cancer: results from the ACOSOG Z5031 trial.
        Ann Surg Oncol. 2011; 18: 337-344
        • Ikoma N.
        • Kim M.P.
        • Tzeng C.-W.D.
        • et al.
        External retraction technique for robotic pancreatoduodenectomy.
        J Am Coll Surg. 2020; 231: e8-e10
      1. U.S. Food & Drug Administration website, Caution when using robotically-assisted surgical devices in women's health including mastectomy and other cancer-related surgeries: FDA safety communication. Access URL: https://www.fda.gov/medical-devices/safety-communications/update-caution-robotically-assisted-surgical-devices-mastectomy-fda-safety-communication, 2021, FDA.

        • Braga M.
        • Pecorelli N.
        • Ferrari D.
        • et al.
        Results of 100 consecutive laparoscopic distal pancreatectomies: postoperative outcome, cost-benefit analysis, and quality of life assessment.
        Surg Endosc. 2015; 29: 1871-1878
        • Zureikat A.H.
        • Beane J.D.
        • Zenati M.S.
        • et al.
        500 Minimally invasive robotic pancreatoduodenectomies: one decade of optimizing performance.
        Ann Surg. 2021; 273: 966-972
        • Song K.B.
        • Kim S.C.
        • Park J.B.
        • et al.
        Single-center experience of laparoscopic left pancreatic resection in 359 consecutive patients: changing the surgical paradigm of left pancreatic resection.
        Surg Endosc. 2011; 25: 3364-3372
        • Asbun H.J.
        • Moekotte A.L.
        • Vissers F.L.
        • et al.
        The miami international evidence-based guidelines on minimally invasive pancreas resection.
        Ann Surg. 2020; 271: 1-14
        • Gianotti L.
        • Besselink M.G.
        • Sandini M.
        • et al.
        Nutritional support and therapy in pancreatic surgery: a position paper of the International Study Group on Pancreatic Surgery (ISGPS).
        Surgery. 2018; 164: 1035-1048
        • Lambert J.E.
        • Hayes L.D.
        • Keegan T.J.
        • et al.
        The impact of prehabilitation on patient outcomes in hepatobiliary, colorectal, and upper gastrointestinal cancer surgery: a PRISMA-accordant meta-analysis.
        Ann Surg. 2021; 274: 70-77
        • de Rooij T.
        • Besselink M.G.
        • Shamali A.
        • et al.
        Pan-European survey on the implementation of minimally invasive pancreatic surgery with emphasis on cancer.
        HPB. 2016; 18: 170-176
        • Jayaraman S.
        • Gonen M.
        • Brennan M.F.
        • et al.
        Laparoscopic distal pancreatectomy: evolution of a technique at a single institution.
        J Am Coll Surgeons. 2010; 211: 503-509
        • Klompmaker S.
        • Zoggel D van
        • Watkins A.A.
        • et al.
        Nationwide evaluation of patient selection for minimally invasive distal pancreatectomy using american college of surgeons’ national quality improvement program.
        Ann Surg. 2017; 266: 1055-1061
        • Scheib S.A.
        • Tanner E.
        • Green I.C.
        • et al.
        Laparoscopy in the morbidly obese: physiologic considerations and surgical techniques to optimize success.
        J Minimally Invasive Gynecol. 2014; 21: 182-195
        • van Wissen J.
        • Bakker N.
        • Doodeman H.J.
        • et al.
        Preoperative methods to reduce liver volume in bariatric surgery: a systematic review.
        Obes Surg. 2016; 26: 251-256
        • Kim J.H.
        • Gonzalez-Heredia R.
        • Daskalaki D.
        • et al.
        Totally replaced right hepatic artery in pancreaticoduodenectomy: is this anatomical condition a contraindication to minimally invasive surgery?.
        HPB. 2016; 18: 580-585
        • Alsfasser G.
        • Leicht H.
        • Günster C.
        • et al.
        Volume-outcome relationship in pancreatic surgery.
        Br J Surg. 2016; 103: 136-143
        • Birkmeyer J.D.
        • Siewers A.E.
        • Finlayson E.V.A.
        • et al.
        Hospital volume and surgical mortality in the United States.
        N Engl J Med. 2002; 346: 1128-1137
        • Busweiler L.A.D.
        • Dikken J.L.
        • Henneman D.
        • et al.
        The influence of a composite hospital volume on outcomes for gastric cancer surgery: a Dutch population-based study.
        J Surg Oncol. 2017; 115: 738-745
        • Wang M.
        • Meng L.
        • Cai Y.
        • et al.
        Learning curve for laparoscopic pancreaticoduodenectomy: a CUSUM analysis.
        J Gastrointest Surg. 2016; 20: 924-935
        • Kim S.
        • Yoon Y.-S.
        • Han H.-S.
        • et al.
        Evaluation of a single surgeon’s learning curve of laparoscopic pancreaticoduodenectomy: risk-adjusted cumulative summation analysis.
        Surg Endosc. 2021; 35: 2870-2878
        • Haney C.M.
        • Karadza E.
        • Limen E.F.
        • et al.
        Training and learning curves in minimally invasive pancreatic surgery: from simulation to mastery.
        J Pancreatology. 2020; 3: 101-110
        • Boone B.A.
        • Zenati M.
        • Hogg M.E.
        • et al.
        Assessment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve.
        JAMA Surg. 2015; 150: 416-422
        • Mark Knab L.
        • Zenati M.S.
        • Khodakov A.
        • et al.
        Evolution of a novel robotic training curriculum in a complex general surgical oncology fellowship.
        Ann Surg Oncol. 2018; 25: 3445-3452
        • Hogg M.E.
        • Tam V.
        • Zenati M.
        • et al.
        Mastery-based virtual reality robotic simulation curriculum: the first step toward operative robotic proficiency.
        J Surg Educ. 2017; 74: 477-485
        • Tam V.
        • Zenati M.
        • Novak S.
        • et al.
        Robotic pancreatoduodenectomy biotissue curriculum has validity and improves technical performance for surgical oncology fellows.
        J Surg Educ. 2017; 74: 1057-1065
        • Harris B.R.
        • Musgrove K.A.
        • Hogg M.E.
        • et al.
        Formal robotic training reduces the learning curve of robotic pancreaticoduodenectomy.
        HPB. 2020; 22: S132
        • Chan K.S.
        • Wang Z.K.
        • Syn N.
        • et al.
        Learning curve of laparoscopic and robotic pancreas resections: a systematic review.
        Surgery. 2021; 170: 194-206
        • Shakir M.
        • Boone B.A.
        • Polanco P.M.
        • et al.
        The learning curve for robotic distal pancreatectomy: an analysis of outcomes of the first 100 consecutive cases at a high-volume pancreatic centre.
        HPB (Oxford). 2015; 17: 580-586
        • Partelli S.
        • Andreasi V.
        • Rancoita P.M.V.
        • et al.
        Outcomes after distal pancreatectomy for neuroendocrine neoplasms: a retrospective comparison between minimally invasive and open approach using propensity score weighting.
        Surg Endosc. 2021; 35: 165-173
        • van Hilst J.
        • de Rooij T.
        • Klompmaker S.
        • et al.
        Minimally Invasive versus Open Distal Pancreatectomy for Ductal Adenocarcinoma (DIPLOMA): A Pan-European Propensity Score Matched Study.
        Ann Surg. 2019; 269: 10-17
        • Tran Cao H.S.
        • Lopez N.
        • Chang D.C.
        • et al.
        Improved Perioperative Outcomes With Minimally Invasive Distal Pancreatectomy: Results From a Population-Based Analysis.
        JAMA Surg. 2014; 149: 237-243
        • Riviere D.
        • Gurusamy K.S.
        • Kooby D.A.
        • et al.
        Laparoscopic versus open distal pancreatectomy for pancreatic cancer.
        Cochrane Database Syst Rev. 2016; 4: CD011391
        • Yang D.-J.
        • Xiong J.-J.
        • Lu H.-M.
        • et al.
        The oncological safety in minimally invasive versus open distal pancreatectomy for pancreatic ductal adenocarcinoma: a systematic review and meta-analysis.
        Sci Rep. 2019; 9: 1159
        • Korrel M.
        • Roelofs A.
        • van Hilst J.
        • et al.
        Long-Term Quality of Life after Minimally Invasive vs Open Distal Pancreatectomy in the LEOPARD Randomized Trial.
        J Am Coll Surg. 2021; 233: 730-739.e9
        • Björnsson B.
        • Sandström P.
        • Larsson A.L.
        • et al.
        Laparoscopic versus open distal pancreatectomy (LAPOP): study protocol for a single center, nonblinded, randomized controlled trial.
        Trials. 2019; 20: 356
        • Björnsson B.
        • Larsson A.L.
        • Hjalmarsson C.
        • et al.
        Comparison of the duration of hospital stay after laparoscopic or open distal pancreatectomy: randomized controlled trial.
        Br J Surg. 2020; 107: 1281-1288
        • van Hilst J.
        • Korrel M.
        • Lof S.
        • et al.
        Minimally invasive versus open distal pancreatectomy for pancreatic ductal adenocarcinoma (DIPLOMA): study protocol for a randomized controlled trial.
        Trials. 2021; 22: 608
      2. Multicenter Prospective Randomized Controlled Clinical Trial for Comparison Between Laparoscopic and Open Distal Pancreatectomy for Ductal Adenocarcinoma of the Pancreatic Body and Tail. clinicaltrials.gov; 2019. Access URL: https://clinicaltrials.gov/ct2/sho the Pancreatic Body and Tail. clinicaltrials.gov; 2019. Access URL: https://clinicaltrials.gov/ct2/show/NCT03957135.

        • Probst P.
        • Schuh F.
        • Dörr-Harim C.
        • et al.
        Protocol for a randomised controlled trial to compare postoperative complications between minimally invasive and open DIStal PAnCreaTectomy (DISPACT-2 trial).
        BMJ Open. 2021; 11: e047867
        • Kamarajah S.K.
        • Sutandi N.
        • Robinson S.R.
        • et al.
        Robotic versus conventional laparoscopic distal pancreatic resection: a systematic review and meta-analysis.
        HPB (Oxford). 2019; 21: 1107-1118
        • Guerrini G.P.
        • Lauretta A.
        • Belluco C.
        • et al.
        Robotic versus laparoscopic distal pancreatectomy: an up-to-date meta-analysis.
        BMC Surg. 2017; 17: 105
        • Hong S.
        • Song K.B.
        • Madkhali A.A.
        • et al.
        Robotic versus laparoscopic distal pancreatectomy for left-sided pancreatic tumors: a single surgeon’s experience of 228 consecutive cases.
        Surg Endosc. 2020; 34: 2465-2473
        • Alfieri S.
        • Butturini G.
        • Boggi U.
        • et al.
        Short-term and long-term outcomes after robot-assisted versus laparoscopic distal pancreatectomy for pancreatic neuroendocrine tumors (pNETs): a multicenter comparative study.
        Langenbecks Arch Surg. 2019; 404: 459-468
        • Yang J.D.
        • Ishikawa K.
        • Hwang H.P.
        • et al.
        Retropancreatic fascia is absent along the pancreas facing the superior mesenteric artery: a histological study using elderly donated cadavers.
        Surg Radiol Anat. 2013; 35: 403-410
        • Newton A.D.
        • Newhook T.E.
        • Bruno M.L.
        • et al.
        Iterative Changes in Risk-Stratified Pancreatectomy Clinical Pathways and Accelerated Discharge After Pancreaticoduodenectomy.
        J Gastrointest Surg. 2022; https://doi.org/10.1007/s11605-021-05235-3
        • Cameron J.L.
        • Riall T.S.
        • Coleman J.
        • et al.
        One thousand consecutive pancreaticoduodenectomies.
        Ann Surg. 2006; 244: 10-15
        • Chen K.
        • Pan Y.
        • Liu X.-L.
        • et al.
        Minimally invasive pancreaticoduodenectomy for periampullary disease: a comprehensive review of literature and meta-analysis of outcomes compared with open surgery.
        BMC Gastroenterol. 2017; 17: 120
        • Wang S.
        • Shi N.
        • You L.
        • et al.
        Minimally invasive surgical approach versus open procedure for pancreaticoduodenectomy: a systematic review and meta-analysis.
        Medicine (Baltimore). 2017; 96: e8619
        • Torphy R.J.
        • Friedman C.
        • Halpern A.
        • et al.
        Comparing short-term and oncologic outcomes of minimally invasive versus open pancreaticoduodenectomy across low and high volume centers.
        Ann Surg. 2019; 270: 1147-1155
        • Nassour I.
        • Wang S.C.
        • Porembka M.R.
        • et al.
        Robotic versus laparoscopic pancreaticoduodenectomy: a NSQIP analysis.
        J Gastrointest Surg. 2017; 21: 1784-1792
        • Nassour I.
        • Choti M.A.
        • Porembka M.R.
        • et al.
        Robotic-assisted versus laparoscopic pancreaticoduodenectomy: oncological outcomes.
        Surg Endosc. 2018; 32: 2907-2913
        • Zureikat A.H.
        • Postlewait L.M.
        • Liu Y.
        • et al.
        a multi-institutional comparison of perioperative outcomes of robotic and open pancreaticoduodenectomy.
        Ann Surg. 2016; 264: 640-649
        • Nassour I.
        • Tohme S.
        • Hoehn R.
        • et al.
        Safety and oncologic efficacy of robotic compared to open pancreaticoduodenectomy after neoadjuvant chemotherapy for pancreatic cancer.
        Surg Endosc. 2021; 35: 2248-2254
      3. Robotic versus Open Pancreatoduodenectomy for Pancreatic and Periampullary Tumors (PORTAL): a study protocol for a multicenter phase III non-inferiority randomized controlled trial | Trials | Full Text.
        (Available at:) (Accessed January 22, 2022)
        • Nagakawa Y.
        • Takishita C.
        • Hijikata Y.
        • et al.
        Blumgart method using LAPRA-TY clips facilitates pancreaticojejunostomy in laparoscopic pancreaticoduodenectomy.
        Medicine (Baltimore). 2020; 99: e19474
        • Hüttner F.J.
        • Koessler-Ebs J.
        • Hackert T.
        • et al.
        Meta-analysis of surgical outcome after enucleation versus standard resection for pancreatic neoplasms.
        Br J Surg. 2015; 102: 1026-1036
        • Di Benedetto F.
        • Magistri P.
        • Ballarin R.
        • et al.
        Ultrasound-guided robotic enucleation of pancreatic neuroendocrine tumors.
        Surg Innov. 2019; 26: 37-45
        • Tian F.
        • Hong X.-F.
        • Wu W.-M.
        • et al.
        Propensity score-matched analysis of robotic versus open surgical enucleation for small pancreatic neuroendocrine tumours.
        Br J Surg. 2016; 103: 1358-1364
        • Pitt S.C.
        • Pitt H.A.
        • Baker M.S.
        • et al.
        Small pancreatic and periampullary neuroendocrine tumors: resect or enucleate?.
        J Gastrointest Surg. 2009; 13: 1692-1698